PIC Lecture

Scott Herdic

September 28, 2005
Overview

• Microcontroller Overview
• Processor Architecture
• Product Families
• Microcontroller Comparison
• Microchip Development Tools
• Resources
Microcontroller Overview

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola</td>
<td>Motorola</td>
<td>Motorola</td>
<td>Motorola</td>
<td>Microchip</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>Mitsubishi</td>
<td>Motorola</td>
<td>Motorola</td>
<td>Motorola</td>
</tr>
<tr>
<td>NEC</td>
<td>NEC</td>
<td>SGS-Thomson</td>
<td>ST-Micro</td>
<td>ST-Micro</td>
</tr>
<tr>
<td>Intel</td>
<td>Hitachi</td>
<td>NEC</td>
<td>NEC</td>
<td>NEC</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Philips</td>
<td>Microchip</td>
<td>Philips</td>
<td>Atmel</td>
</tr>
<tr>
<td>Philips</td>
<td>Intel</td>
<td>Philips</td>
<td>Atmel</td>
<td>Sunplus</td>
</tr>
<tr>
<td>Matsushita</td>
<td>SGS-Thomson</td>
<td>Zilog</td>
<td>Hitachi</td>
<td>Hitachi</td>
</tr>
<tr>
<td>National</td>
<td>Microchip</td>
<td>Hitachi</td>
<td>Toshiba</td>
<td>Fujitsu</td>
</tr>
<tr>
<td>Siemens</td>
<td>Matsushita</td>
<td>Fujitsu</td>
<td>Samsung</td>
<td>Philips</td>
</tr>
<tr>
<td>TI</td>
<td>Toshiba</td>
<td>Intel</td>
<td>Elan</td>
<td>Toshiba</td>
</tr>
<tr>
<td>Sharp</td>
<td>National</td>
<td>Siemens</td>
<td>Zilog</td>
<td>Matsushita</td>
</tr>
<tr>
<td>Oki</td>
<td>Zilog</td>
<td>Toshiba</td>
<td>Matsushita</td>
<td>Samsung</td>
</tr>
<tr>
<td>Toshiba</td>
<td>TI</td>
<td>Matsushita</td>
<td>Infineon</td>
<td>Elan</td>
</tr>
<tr>
<td>SGS-Thomson</td>
<td>Siemens</td>
<td>TI</td>
<td>Fujitsu</td>
<td>Winbond</td>
</tr>
<tr>
<td>Zilog</td>
<td>Sharp</td>
<td>National</td>
<td>Mitsubishi</td>
<td>Zilog</td>
</tr>
<tr>
<td>Matra MHS</td>
<td>Oki</td>
<td>Temic</td>
<td>Sanyo</td>
<td>Sanyo</td>
</tr>
<tr>
<td>Sony</td>
<td>Sony</td>
<td>Sanyo</td>
<td>Winbond</td>
<td>Matsushita</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>Sanyo</td>
<td>Ricoh</td>
<td>National</td>
<td>Infineon</td>
</tr>
<tr>
<td>AMD</td>
<td>Fujitsu</td>
<td>Oki</td>
<td>Sony</td>
<td>Holtek</td>
</tr>
<tr>
<td>Microchip</td>
<td>AMD</td>
<td>Sharp</td>
<td>Holtek</td>
<td>National</td>
</tr>
</tbody>
</table>

Figure 1-1 Worldwide market share for producers of 8-bit microcontrollers, sorted by units shipped. (2002 Microcontroller Market Share and Unit Shipments, Tom Starnes, Gartner Dataquest, June 2003)
Microcontroller Overview

![Graph showing market share trends for Motorola and Microchip Technology from 1992 to 2002]

Peatman, John. *Embedded Design with the PIC18F452 Microcontroller*. Prentice Hall 2003
Figure 1-3 Microcontroller unit shipments per year, as distinguished by data word length (Dataquest).

Peatman, John. *Embedded Design with the PIC18F452 Microcontroller*. Prentice Hall 2003
Processor Architecture

- **Von Neumann**
 - Single data bus for instructions and data
 - Motorola HC11

- **Harvard**
 - Separate memory spaces for data and instruction
 - Fetch instruction and data simultaneously
 - Microchip PIC
Product Families

- 8-bit
 - PIC10
 - 6 pins, 2 MIPs, 768 Bytes
 - PIC12
 - 8 pins, 5 MIPs, 3584 Bytes
 - PIC16
 - 14 - 80 pins, 10 MIPs, 14336 Bytes
 - PIC18
 - 18 - 128 pins, 12 MIPs, 131072 Bytes
Product Families

• 16-bit: dsPIC30F
 – 18 to 80 pins, 30 MIPs, 144kB
 – Single Core Integrating MCU and DSP
 • FFT, Digital Filters, Matrix Operations
 – 16 x 16 Working Register Array
 – Three Operand Instruction: C =A+B
 – Optimized for C Programming
Microcontroller Comparison

<table>
<thead>
<tr>
<th>Microcontroller</th>
<th>Max Speed</th>
<th>Internal Oscillator</th>
<th>Program Memory</th>
<th>Data EEPROM</th>
<th>RAM</th>
<th>ADC</th>
<th>Timers</th>
<th>Capture/Compares</th>
<th>Communication</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola HC11</td>
<td>12 MHz</td>
<td>No</td>
<td>12 KB</td>
<td>512 Bytes</td>
<td>512 Bytes</td>
<td>8 - 8 bit</td>
<td>1- 16 bit</td>
<td>SCI</td>
<td>SPI</td>
<td>$5.48</td>
</tr>
<tr>
<td>PIC12F683</td>
<td>20 MHz</td>
<td>8 MHz</td>
<td>3584 Bytes</td>
<td>256 Bytes</td>
<td>128 Bytes</td>
<td>4 - 10 bit</td>
<td>2 - 8 bit</td>
<td>1</td>
<td>No</td>
<td>$1.47</td>
</tr>
<tr>
<td>PIC16F916</td>
<td>20 MHz</td>
<td>8 MHz</td>
<td>14336 Bytes</td>
<td>256 Bytes</td>
<td>352 Bytes</td>
<td>5 - 10 bit</td>
<td>2 - 8bit</td>
<td>1</td>
<td>AUSART I2C</td>
<td>$2.71</td>
</tr>
<tr>
<td>PIC18F4520</td>
<td>40 MHz</td>
<td>8 MHz</td>
<td>32 KB</td>
<td>256 Bytes</td>
<td>1536 Bytes</td>
<td>13 - 10bit</td>
<td>1- 8bit</td>
<td>AUSART I2C</td>
<td>SPI</td>
<td>$5.79</td>
</tr>
</tbody>
</table>
Development Tools

• **MPLAB IDE**
 – Integrated Development Environment
 – Free Download (http://www.microchip.com)

• **MPLAB SIM** – Simulate Program in MPLAB
 – Included with MPLAB

• **ICD2** – *InCircuit* Debugger
 – Debugger/Programmer
 – $159

• **PICSTART Plus**
 – Programmer for all DIP packages
 – $199
Visual Initializer
Visual Initializer
ICD2

- Debugger/Programmer
- Integrates with MPLAB
- Works in Application Circuit
- Allows:
 - Pause Program
 - Set Breakpoints
 - Examine Register/Variable Values
 - Modify Register/Variable Values
- Occupies 2 I/O pins
- USB and Serial Interface w/ PC
- Cost: $159 from Microchip
PICSTART Plus

- Programmer
- Remove chip for programming
- Works on DIP packages
- Integrates with MPLAB
- Cost: $199 from Microchip
Microchip Resources

• Microchip Website: http://www.microchip.com
 – Product Data Sheets, Application Notes, Development Tools, Discussion Forum

• Embedded Design with the PIC18F542 Microcontroller
 – http://www.picbook.com

• ECE4175 – Embedded Microcontroller Design